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An analysis of the anisotropic Heisenberg model is carried out by solving the Bethe ansatz 
solution of the model numerically as a function of t'mite N. A brief introduction to the infinite 
chain limit is presented and the energy for a few limiting cases of  the anisotropy parameter are 
evaluated. Numerical results for the infinite chain are given which can be compared with the 
case of finite increasing N. It is shown that the calculation can be extended to the case of  an 
excited state of the model. 

1. Introduct ion  

The properties of linear magnetic chains are useful to study because they provide 
simple yet nontrivial models of many body systems. Linear antiferromagnetic 
chains exist in crystals and can be studied experimentally. In the case in which the 
model is described by the Heisenberg Hamiltonian with one anisotropic coupling, 
the model can be solved exactly using the Bethe ansatz [1-4]. 

The investigation will be restricted to chains of spins on a lattice with nearest 
neighbor interactions. The Hamiltonian of the system is taken to be 

N 

Sj Sj+ 1 q- pSjS}+I) . (1)  
j= l  

Therefore, the Hamiltonian is anisotropic in the z-direction. The spin operator 
with components S}', Sf, and S~ is associated with site j ,  and corresponds to states 
of spin 1/2 distributed along sites labelled by the indexj. Moreover, it is assumed 
that the sites form a ring and satisfy periodic boundary conditions such that site 
(N + 1) coincides with site 1. 

The completely isotropic problem in which p = 1 has been investigated by Bethe 
[1], Hulthen [5], and (1) is the form of the Hamiltonian used by Cloizeaux and Pear- 
son [6]. Bethe was able to classify all the eigenstates of the isotropic Hamiltonian 
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by means of sets of integers, and to obtain a set of nonlinear, coupled equations 
which yield the eigenvalues of the system. The isotropic version of the model was 
investigated by Griffiths [7], and the first extensive treatment of the anisotropic 
model was given by Cloizeaux and Gaudin [8]. For the sake of completeness, many 
aspects of the model are reviewed so the numerical work will have context. 

Our intention is to investigate the solutions of the anisotropic Hamiltonian and 
to review the numerical calculation of the ground state energy as a function of the 
anisotropy parameter. This corresponds to a certain choice of the quantum num- 
bers in the solution of the model. The energy per particle can also be obtained from 
this. It is shown that the energy can be obtained numerically as a function of N 
from the Bethe ansatz solution for various values of p. For the sake of complete- 
ness, an outline of the derivation of the equations for the energy per particle for the 
infinite chain will be given. The energies calculated from these equations can be 
compared with the finite N values. In addition to the explicit calculations for finite 
N, there are results for negative p, which were not given in Orbach [3]. It should 
be noted that the finite N analysis will provide information to treat the infinite limit 
in a different way. The finite N results can be used in combination with asymptotic 
analysis, for example extrapolation, to give information about the large N region. 

The next step is to use the same basic techniques to calculate the excitation ener- 
gies which correspond to quantum numbers of a different symmetry for finite N 
as a function p. Some mathematical techniques which are important in the deriva- 
tions and have not appeared before are included. It is hoped that this will show the 
methods of this article might be used to study general sets of solutions to the Bethe 
equations, and that these techniques can be applied to other lattice spin models. 
For example, let us mention that of particular interest recently in Hamiltonian field 
theory is the use of finite size scaling. This has been used to extract critical points 
and critical exponents from the two lowest eigenvalues of the Hamiltonian [8,9]. It 
may be that by modifying the techniques here enough, one could use these tech- 
niques to calculate similar quantities. In fact, the techniques used in this paper have 
also been used in the study of the one- dimensional Hubbard model [7,10], and the 
spin Hamiltonian. It is hoped that this work will be of use in encouraging the appli- 
cation of these techniques to other areas. 

2. Solution ofanisotropic Hamiltonian 

The Hamiltonian has been given in (1) and the Hamiltonian H commutes with 
the component S z of the total spin operator 

N 

sl. 
i=1 

Therefore, it is possible to diagonalize simultaneously H and S z, so for each eigen- 
state 1~) of H one may write 
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HI~> = EI~>, 

= MI >. 

We know that for p -- 1, H commutes with the total spin S and so for the ground 
state one has S = 0, M = 0 and this state is unique. For  p > -1 ,  the ground state 
should be unique with the value M = 0. However, for p < -1 ,  the ground state 
should be doubly degenerate with M = + N / 2 .  

Let us briefly introduce the model, which will establish notation,  and give an out- 
line of  the solution for finite values of N. Let [OF) be the ferromagnetic state which 
corresponds to M = ½N, so that all spins are parallel to each other, that is, 
~ [ ~ F )  = O. One may write 

H(V)IWF> = EFIW >. 
Since only the S j  operators in H will make a contribution for this state, the energy 
eigenvalue is given by 

gF(P)  ---- ¼Np.  

By flipping r spins in [~F), any eigenstate [Et> o f S  z can be constructed, 

let) = E a(n l ,  . . . , m ) S •  . . . S ; I ~ F  ) . 
PI1 < n 2 < - - - < n  r 

and the corresponding eigenvalue o f S  z is 

M = ½ ( S - 2 r /  

The task now is to determine the coefficients a ( n l , . . . ,  nr) in order to give an eigen- 
state of  H with eigenvalue E 

Hlf~> = Elf2> • 

If we define e by setting 

e = (E  - g F ) / N  

then by substituting Ill) it is found that the eigenvalue problem is equivalent to 
the difference equation 

E [a (n /1 , . . .  ,ntr) - p a ( n l , . . .  ,nr)] = 2 N e a ( n l , . . .  ,nr) 

with nl < . .-  < nr. In this equation, a term ofa(n~, • • •, n'r) is obtained by changing 
one number  n of  a ( n l , . . . ,  nr) by one unit and summing over all possible combina- 
tions which come from it. The coefficients can be expressed in terms of  r wavenum- 
bers ks, a = 1,- --, r, and phases ¢~a associated with each pair of wavenumbers ks 
and k#. The form of  the ansatz is 

i k ono+  
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where P is any permutation of the set of numbers (1 , . . . ,  r). This is Bethe's ansatz 
form for the solution. 

In terms of the wavenumbers k~, the energy per particle e, which will be referred 
to as the energy, is given by 

e = N -1 ~-~(cosk~ - p). (2) 

A relation implicit in the eigenvalue problem gives an equation which determines 
¢ ~  as follows: 

co t ( l ka ) -  cot(½k#) 
cot(~C~Z) = p (1 + p) -: ~ ---p) ~ cot(½kz)] " (3) 

Since the spin system is cyclic, the coefficients a(n:,..., nr) must satisfy the fol- 
lowing boundary condition equations 

a(nl ,n2, .-- ,nr)  = a(n2,.- . ,nr,  nl + N) 

and after some algebra with the ansatz, these imply the following equations for 
the ks: 

Nk,~ = 27rA~ + ~ ¢ ~ .  (4) 

The total wavevector is directly related to the )~a since 

A numerical solution of the system (3) and (4), which corresponds to the ground 
state quantum numbers, will be treated first. A second choice of the As will then be 
investigated. These correspond to an excitation of the system which is different 
from the ground state. 

3. Q u a n t u m  n u m b e r s  a n d  v a r i a b l e s  a s  p ~ 0 

The behaviour of the variables will be discussed in the neighborhood of p = 0. 
In particular, the behaviour of the quantities ks and ¢~a when p --. +0 will be dis- 
cussed first. The equations which determine the wavenumbers (4) come from the 
periodic boundary conditions, where ~b~ is determined by (3). 

If one supposes that near p = 0, the set of ks vary between 7r/2 and 37r/2, then 
the set k~/2 varies between 7r/4 and 37r/4, and so the product of functions 
(1 - p) cot(k~/2) cot(k~/2) should never exceed one, and ought to be less than 
one. Taking into account the fact that the cotangent is decreasing on (0, 7r) one has 
from(3) 

cot(~b~) --* - 0  sign(k~ - k~) 
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and  therefore  

¢~/3 -+ - l r  sign(ks - k/3). 

Since the ¢~/3 goes to a constant ,  the ks  can be evaluated f rom (4) by writ ing the 
sum over/3 explicitly as follows: 

= 

]3#et 1 ~/3<o~ or<~3 ~ N /2 

The first sum on the r ight  can be done by assuming the set of  ks  are m o n o t o n i c  so 
tha t  k/3 < ks  for/3 < a to give in the limit p ~ +0  

~o/3 = - ~ ( ~  - 1). 
I ~</3<a 

The second sum is given by 

~,~/3=~ ? - - ~  . 
ct</3~N/2 

Therefore  

Z ~ G / 3  = r r N -  27ra + rr. 

/3#~ 

Sett ing 

A s =  2 a -  1 (5) 

in (4) for the g round  state, where a = 1, • • •, N/2, gives the result 
7r 7r 

k~(+0)  = ~ + ~ ( 2 a -  1). (6) 

As conjectured,  for the limit p = +0, the ks  vary roughly between 7r/2 and  30r/2 as 
expected. 

Consider  the limit f rom the other  direction p + - 0 .  In  this case, the behaviour  
of  the phases is somewhat  different. Since the sign of  p is opposi te  in this limit, 
requir ing tha t  (3) give the q)~/3 

cot(12-~b~/3) + +0  sign(ks - k/3), 

~G/3 ~ 7r sign(ks - k/3). 

The  sum over fl in (4) can be done in the same way to give 

N 
¢~e = 2 ~ -  ~ - ~ .  

Suppose  
the r ight  

it is required tha t  ks  be cont inuous  at p = 0 as p goes to zero f rom either 
or the left, tha t  is 
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k(+O) = k( -O) .  

Let A" be the set of quantum numbers for the region - 1 < p < O, then applying con- 
tinuity gives the following equation: 

N N 
-~-rr + rr(2a - 1) = 27rA" + 27ra - 7 r -  ~-rr. 

Solving this equation for the A', one obtains 

N 

In order to describe the ground state for p i> 1, the same set of As given in (5) are 
used as in the domain 0 ~< p ~< 1 to calculate the energy. 

Given the wavevectors at p = 0, the energy for N finite can be found by substitut- 
ing (6) into (2). The sum over c~ can be done by writing the sines in terms of  complex 
exponentials and then summing the geometric series. One obtains 

1 
eN(0 ) -  Nsin 

for finite N. 

4. Calcu la t ions  for  finite N 

To carry out the calculation, the region p > 0 will be treated first. To calculate 
the energy for p > 0, the set of As given by (5) are used to define the ground state 
and (6) is used to initialize the wavevectors in a small region just to the right of  the 
origin. Of course these are only the approximate values for the wavevectors close 
to 0, however, the calculation will produce the correct ones. If  p is initialized to a 
small positive number  in this interval, the set of  eqs. (3) and (4) can be solved 
numerically by a straightforward Newton-Raphson  iteration technique to calcu- 
late the exact values for the set ofk~ at the corresponding value ofp.  The energy can 
be calculated from (2). With these values to initialize the variables, the parameter  
p can be incremented by a small amount  and the exact values of  the variables at the 
new p can be evaluated. If this is continued, the wavevectors, and consequently 
the energy, and the energy per particle, can be calculated essentially as continuous 
functions of  p out to large values of p. The results of the numerical calculation 
over a range ofp  are shown in table 1. 

The calculation for - 1  < p < 0 proceeds in exactly the same way by using (6) 
to initialize the wavevectors just to the left of the origin, where the wavevectors are 
continuous through p = 0. However, in this region, the quantum numbers which 
define the state are given by A'~ = N/2 for each a. In this case, the parameter  p is 
decreased by small amounts  until the neighbourhood to the right of  p = - 1  is 
reached. At this value, the ground state becomes doubly degenerate and the energy 
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Table 1 
Values ofe as a function ofp from 0.1 to 2.0 for particle numbers o fN = 6, 10, 14, 34 and 50. 

p N = 6  N =  10 N =  14 N = 3 4  N = 5 0  

0.1 -0.3696 -0.3593 -0.3565 -0.3541 -0.3539 
0.2 -0.4064 -0.3955 -0.3925 -0.3900 -0.3897 
0.3 -0.4437 -0.4321 -0.4290 -0.4264 -0.4261 
0.4 -0.4814 -0.4693 -0.4660 -0.4632 -0.4629 
0.5 -0.5196 -0.5069 -0.5034 -0.5005 -0.5002 
0.6 -0.5582 -0.5449 -0.5413 -0.5383 -0.5380 
0.7 -0.5973 -0.5834 -0.5797 -0.5765 -0.5761 
0.8 -0.6368 -0.6223 -0.6184 -0.6151 -0.6148 
0.9 -0.6767 -0.6617 -0.6577 -0.6542 -0.6539 
1.0 -0.7171 -0.7015 -0.6973 -0.6938 -0.6934 
1.1 -0.7579 -0.7418 -0.7375 -0.7338 -0.7334 
1.2 -0.7991 -0.7825 -0.7781 -0.7744 -0.7740 
1.3 -0.8407 -0.8237 -0.8192 -0.8154 -0.8265 
1.4 -0.8827 -0.8653 -0.8607 -0.8569 -0.8668 
1.5 -0.9251 -0.9074 -0.9028 -0.8990 -0.9077 
1.6 -0.9679 -0.9500 -0.9453 -0.9416 -0.9728 
1.7 -1.0110 -0.9930 -0.9883 -0.9848 -1.0256 
1.8 -1.0545 -1.0364 -1.0318 -1.0284 -1.0805 
1.9 -1.0984 -1.0802 -1.0757 -1.0726 -1.1224 
2.0 -1.1426 -1.1244 -1.1201 -1.1173 -1.1987 

becomes propor t ional  to p. Results f rom the numerical calculations are shown in 
table 2. Fo r  the cases N = 6, 10 and 14, the calculation has been continued down to 
a value of  p = -0 .999  and the following values for energy have been obtained,  
c = -0 .00030  for N = 6, -0 .00027 for N = 10 and -0 .00026 for N = 14. 

The limit p = - 1  is characterized by the fact that  all the values o f  ks  become 
equal, in fact, one should have ks = 7r. As an example, at p = -0 .999  one obtains  
numerically the following values for the three wavevectors  when N =  6, 
kl = 3.1069, k2 = 3.1415, k3 = 3.1762, respectively. 

Table 2 
Values ofe as a function ofp from -0.1 to -0.9 for particle numbers ofN = 6, 10, 14, 34 and 50. 

p N =  6 N =  10 N =  14 N =  34 N =  50 

-0.1 -0.2974 -0.2883 -0.2859 -0.2838 -0.2836 
-0 .2  -0.2620 -0.2536 -0.2514 -0.2494 -0.2492 
-0.3 -0.2272 -0.2195 -0.2174 -0.2156 -0.2154 
-0 .4  -0.1928 -0.1859 -0.1840 -0.1824 -0.1822 
-0 .5  -0.1591 -0.1529 -0.1512 -0.1498 -0.1496 
-0 .6  -0.1259 -0.1206 -0.1191 -0.1178 -0.1177 
-0.7 -0.0934 -0.0890 -0.0878 -0.0867 -0.0866 
-0.8 -0.0615 -0.0582 -0.0573 -0.0565 -0.0564 
-0 .9  -0.0303 -0.0285 -0.0279 -0.0273 -0.0200 
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5. Limit  o f  the infinite chain 

An integral can be obtained for the energy in the limit N ~ oo, and it will briefly 
be outlined how this is accomplished, and then three limiting cases can be exam- 
ined. The numerical results of the calculation can be compared to the analytical 
results. 

For - 1 < p < 1, define 

p = COS 7, 0 < 7 < 7r, 

t a n h ( ~ )  = tan(~-/)cot(~ka), 

cot (2!~)  = cot 7 t a n h ( ~  - ~ ) ,  

When N ~ oo, k~ becomes a continuous function k(x). In the same way, ~b~ 
becomes the function ~b(x, x ~) and these equations pass into a corresponding set 
which depend continuously on the variables k(x) and ~b(x, x'). Passing to the contin- 
uous limit these equations become 

tanh(~) = tan(~7)cot(lk), (7) 

cot t n (; 
Consequently, the energy of the corresponding state can be expressed in terms of 
the integral 

I :2~ 
e = ~ J0 (cos(k(x)) - p) dx (9) 

and (4) becomes an integral equation 

l f o ° °  k(x) = x + - ~  ¢(x,x  j) dx j . (10) 

The auxiliary variable 0, becomes a continuous function 0(x), and differentiating 
both sides of this equation with respect to x, realizing that ¢ is discontinuous at 
x = x', and finally introducing the function f(0) defined by 

dx 
- - f (0) ,  dO 

the integral equation in terms off(0) is given by 

Ok I f l / ° °  o~,;x~) f(O) d 0 (11) = - ( o )  + 
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such that  0~b(x, x~)/00 denotes the continuous part of  the derivative of  ~(x, x'). It 
may be assumed that O(x) decreases from +oo to - o o  when x increases from 0 to 27r. 
Differentiating (8) with respect to 0 one obtains using cosh 2 v = (cosh 2v + 1)/2, 

0~b sin2 7 
i90 cosh(0 - 0 ~) - cos 2 7 " 

The derivative o fk  is given by 

Ok sin 7 

/90 cosh O - cos 7 

and so the integral equation can be written as 

1 f o o  sin2 7 27f(0~)d0~ 2s in7  
f(O) + ~ oo cosh(0 - 0') - cos = cosh 0 - cosT" 

Introducing the Fourier transform off(0),  

F f(O) = ei~°a(w) dw. 
O0 

the integral over 0' can be done by using the following result: 

1 f , o  exp(iw0 ~) e~°sinhw(zr - F) 
Fd0 '  (12) 

J_oocosh(O-  if) - cos = sinFsinhwTr 

The integral equation then becomes 

f o o  ( s inh(-2w7 + 7rw)) 2s in7  
~o dwa(w)ei~° 1 + sinhwTr = cosh0 - cos7 

Multiplying both sides of  this equation by e -he° and integrating from -cx~ to +oo 
with respect to 0 using (12) one obtains 

2 sinh w(Tr - 7) = sech w7 
a(w) = sinho.m + sinh(wTr - 2w7) 

and substituting this result for a(w) back into the integral forf(O) it is found that  
the integral can be done in closed form to give 

f(O) = 7rsech07r . 
7 27 

Since cos k(x) = (1 - 2 s i n  2 k(x))/2, using (10) and identities, the energy can be 
written as 

sin27 foo f(O) 
e = ~ J-oo cosla 0 -  cos 7 dO. 

Introducing the Fourier transform off (0)  and carrying out the integral over 0, the 
energy per particle is 
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1 t °o sinhw(Tr - 7) 
c = - - s i n T l  - - - - ~  dw . 

2 J_oo sinh wTr cosh w7 

Expanding  the hyperbol ic  sine, one arrives at the final result for 0 ~< p < 1: 

f0 °~ ( tanh w f l  dw e = - sin 7 1 tanh w-x,/ " 

The part icular  limits p = 0 and p = 1 can be evaluated explicitly f rom this equa t ion  
and  in order  to compare  with the case of  finite N, it is useful to do so. To  obta in  
p = 0, set 3' = 7r/2 and so it follows that  

l f o ~  1 e(O) = - ~  cosh2(wTr/2) d w -  7r " 

Exactly the same result is obta ined if one takes eN(0) and calculates the limit 
N ~ 0o. To  obtain p = 1, set v = w7 so that  c(p) can be wri t ten as 

s in7  ~ o o ( l  t a n h v  
c ( p ) -  

7 .v  _ t a n h ( v / 7 ) )  dr" 

Taking  the limit 7 ~ 0 gives e(1 ) 

f o o  fo oo dv  In2 .  e(1) = - (1 - t a n h v ) d v  = - 2  e2 ~ +-----f - 

Since )~ = N / 2  for - 1  < p < O, it can be shown that  the integral  equa t ion  corre- 
sponds  exactly with the previous integral equat ion,  and so the calculat ion off(O) is 
pe r fo rmed  in exactly the same way. It is then very easy to obta in  the energy per  par-  
ticle at p = - 1 for the infinite limit where 7 = ~r, and  one obtains 

e ( -1 )  = 0 .  (13) 

For  p >/1 set p = cosh 7, the integral equat ion  is exactly the same as (11) however  
since p > 1 the derivatives are found f rom the cont inuat ions  of  (7) and  (8) which 
are valid for p > 1, 

tan(½(9) = tanh(~-y)cot(½k), 

cot(½~b(x, x')) = c o t h 7  tan(½(9 - ½(9'). 

The  integral equat ion  which determines g((9) is therefore 

sinh 2 7 f ~  g((9') 2 sinh 7 
g((9) 4 27r a - r  cosh 2 7 - c--oos((9 - (9') d(9' = cosh 3' - cos (9 

Not ice  tha t  if one makes  the replacement  (9 ~ (9 + 27r in this equat ion,  it follows 
tha t  g((9) = g((9 + 27r) so g((9) is 27r periodic, and can therefore be expanded  in a 27r 
periodic  Four ier  series as follows 

oo 
g(()) = Z anein4~" 

tl=--O0 
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Using the integral 

1 f ~  exp(in~b') 
2--~ J _ .  c o s h T - ~  - ~ )  d~b' = e i'~ exp(- ln[7)  (14) 

sinh 7 ' 

it is found  that  

1 

an cosh n7 

Substi tut ing g(~) with a,  given above, the energy per particle is given in this region 
by  

e = - sinh 7 1 - tanh nT) + • 
kn=l 

Values for the energy can be obtained from this by simply adding terms when 
p > 1. Values for e as a function o f p  for the case N = co as calculated f rom the inte- 
gral and this series expansion for e are given for certain values o f  p in table 4. Using 
Thiele with five points as a function o f  N ,  it can be shown that the f'mite chain results 
in the first table tend to those of  the infinite chain as N becomes large. 

6. Exc i ted  state 

The nota t ion  of  des Cloizeaux and Gaudin  [8] for the excitation energy will first 
be reviewed here. In the limit N ~ co, one calculates the excitation energy 
rl(p, M,  q) which is defined by the equat ion 

r l ( p , M , q )  = l i m o o ( E ( p , M , q  ) - EAF(p)) .  

Consequently,  for finite cycles, one has 

r l ( p , U , q  ) = N ( e ( p , M , q ) - - O A F ( P ) ) ,  (15) 

where eaF(P) is the value of  E which corresponds to the ground state. By solving 

Table 3 
Values ofe as a function of N at fixed p = +0.00001 calculated numerically. Theoretically, it is found 
that e~ (0) = - 1/rr--" 0.31830. 

N e(O.O0001) e(-O.O0001) eN(O) 

6 -0.33333 -0.33332 -0.33333 
10 -0.32361 -0.32360 -0.32360 
14 -0.32100 -0.32099 -0.32099 
34 -0.31876 -0.31875 -0.31876 
50 -0.31852 -0.31851 -0.31851 
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Table 4 
Selected values of e as a function of p for the case N = oo calculated from the integral for p < 1 and 
from the series for p > 1. 

p 

0.3 -0.4259 
0.4 -0.4627 
0.5 -0.4999 
0.6 -0.5377 
0.7 -0.5759 
0.8 -0.6145 
1.0 -0.6931 
1.1 -0.7331 
1.2 -0.7736 
1.3 -0.8146 
1.4 -0.8562 
1.5 -0.8984 
1.6 -0.9411 
1.7 -0.9844 
1.8 - 1.0282 
1.9 - 1.0725 
2.0 -1.1172 

the coupled Bethe ansatz equations for the given set o f  As, the value of  e(p) can be 
calculated using (4), and then the excitation energy is calculated f rom (5). 

To determine the excitation energy 77, the integers A,~ which characterize the 
given state must  be specified. For  the ground state, these integers are given as 
As = 2a  - 1, for a = 1,. • . ,  N/2.  For  the state which is referred to as [p, 0, q) in [8], 
the quan tum numbers  are given as follows: 

A s = 2 a - 2 ,  l~<a~<n, 

A s = 2 a - 1 ,  n<~a<~N/2, (16) 

Here,  n is an integer. A fixed number  n of  these quan tum numbers  will differ by 
one unit f rom the ground state values. The spin wave vector  q is determined by  n 
through the equat ion 

27rn 
Iql- N 

Given these quan tum numbers,  the system (2) and (3) can be solved as a funct ion 
of  p. Quan tum numbers  for other excitations have been discussed by  Grif~ths  [7]. 
This is done for finite values of  N. By taking a number  of  values for the pair  o f  inte- 
gers n and N, the ratio can be adjusted so that  we are working at a fixed value o f  q 
for increasing N. This means we take a finite value of  n and calculate the corre- 
sponding As. O f  course, q becomes a cont inuous variable as N ~ oo. 
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7. Ca lcu la t ions  

The quan tum numbers are determined by eq. (16). Consider, as an example, the 
case in which N = 6, and let us take n = 1. This gives the value Iql --  zr /3 .  Then the 
set of  quantum numbers which is used to solve (2) and (3) is the set given by 
{0, 3, 5} where in contrast, the ground state quantum numbers are given by 
{1,3,5}. 

The numerical analysis is just an extension of  that  used for the ground state. 
The Bethe equations, which were presented in the introduction, can be solved 
numerically for a given set of quantum numbers using a Newton method  algorithm 
once initial values for the variables k~ have been determined. This is the main point  
we would like to emphasize in this article. The variables ks can be initialized at 
p = 0 for this state. To do this, consider first the ground state. For  the ground state, 
it has been shown [8] that the set of ks can be determined analytically at p = 0, 
and are given by the expression 

7r 7r 
ka = ~ +  ( 2 a -  1 ) ~ .  

Using these values to initialize the calculation at p = 0, the system can be solved 
by iterating in the first n quantum numbers while keeping p fixed near zero. That  is, 
we begin with the set of ground state values, and then increment the first n of  them 
in a direction such that they have been changed to the point at which the first n of  
the A~ are equal to the numbers given in (16). At each small change in the quan tum 
numbers,  a corresponding set of  k~ is calculated by means of the iterative Newton  
algorithm. These ks will initialize the variables at the next increment. 

Once this is carried out, a set ofk~ which correspond to the A~ in (16) and p = 0 
are obtained. Now keeping the quantum numbers fixed, p can be varied away 
from zero to obtain the energy as a function ofp  for the new state. 

Similarly, the ks can be calculated for -1  < p < 0 where the quantum numbers  
which are used for this state are given as follows: 

N 
A ~ -  2 

- - - - 1 ,  l <~a<~n, 

N 
n < c~<~-~  . 

N ;--y, 
The ks which correspond to these for p = 0- can be calculated in exactly the same 
way as the set for p = 0 +, and then this set of momenta  is used to initialize the calcu- 
lation as p is decreased toward p = - 1. 

It can be shown that if we define 3' through the equation 

p = COS 7 ,  

then, in the limit of the infinite chain, N --+ oo, the excitation energy is given by 
the equation 
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7rsinTIsinql , -1  < p < 1. (17) r/(p,0, q) = 27 

Numerical results for small cycles can be compared to results which are obtained 
from this equation for the infinite cycle. 

8. Results  

It has been found that for each of the finite rings which have been studied with 
this technique, a f'mite, well-defined solution for the set ofk~ and corresponding e is 
obtained as p is varied between -1  and +1. The initial values for the variables are 
calculated using the procedure outlined earlier, and the corresponding value of q is 
taken to agree with that calculated for the finite N case. The ground state energy 
can be calculated using a similar procedure. These values are used to calculate the 
excitation energies. The values for the excitation energies for the infinite chain are 
calculated from equation (17). The numerical results are reported in tables 5 to 7. 

There are some other interesting features of this particular solution to the Bethe 
equations we mention. It is also found that one of the k~, in particular kl, tends 
numerically to zero as p approaches 1. In the solution of(2) and (3), this means that 
the function cot(kl/2) becomes singular. It is possible to approach arbitrarily close 

Table 5 
Excitation energy 77 = N[e - eg[ for the anisotropic Heisenberg model as a function 
the ground state energy. The quantum numbers are as given in the text, and Iql = zr/3. 

of p where eg is 

p N = 6  N = 1 8  N = o o  

0.1 1.0499 0.9920 0.9203 
0.2 1.0999 1.0393 0.9732 
0.3 1.1502 1.0874 1.0249 
0.4 1.2008 1.1349 1.0754 
0.5 1.2520 1.1818 1.1250 
0.6 1.3039 1.2285 1.1736 
0.7 1.3567 1.2751 1.2213 
0.8 1.4105 1.3218 1.2683 
0.9 1.4656 1.3689 1.3146 

-0.1 0.4492 0.7106 0.8100 
-0 .2  0.3969 0.6534 0.7521 
-0.3 0.3428 0.5940 0.6919 
-0 .4  0.2865 0.5320 0.6289 
-0.5 0.2273 0.4667 0.5625 
-0 .6  0.1645 0.3971 0.4914 
-0.7 0.0968 0.3214 0.4140 
-0.8 0.0216 0.2362 0.3267 
-0.9 0.0667 0.1327 0.2203 
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Table 6 
Excitation energy ~ = Nle - egl for the anisotropic Heisenberg model as a 
the ground state energy. The quantum numbers are given, and Iql = ~ r /4 .  

71 

function of p where eg is 

p N = 8  N = 1 6  N = c ~  

0.1 0.8077 0.7920 0.7514 
0.2 0.8497 0.8328 0.7946 
0.3 0.8913 0.8730 0.8368 
0.4 0.9328 0.9128 0.8781 
0.5 0.9745 0.9523 0.9185 
0.6 1.0165 0.9917 0.9582 
0.7 1.0590 1.0310 0.9972 
0.8 1.1023 1.0705 1.0356 
0.9 1.1467 1.1105 1.0734 

-0.1 0.4978 0.5912 0.6613 
-0 .2  0.4532 0.5446 0.6140 
-0.3 0.4068 0.4962 0.5649 
-0 .4  0.3584 0.4456 0.5135 
-0.5 0.3074 0.3923 0.4592 
-0 .6  0.2531 0.3354 0.4012 
-0.7 0.1942 0.2735 0.3380 
-0.8 0.1282 0.2038 0.2667 
-0.9 0.0490 0.1192 0.1799 

Table 7 
Excitation energy 77 = Nle - eg[ for the anisotropic Heisenberg model as a function of p where eg is 
the energy of the ground state. The quantum numbers are given and Iql = ~ r /5 .  

p N =  10 N =  20 N = o o  

0.1 0.6538 0.6457 0.6246 
0.2 0.6891 0.6803 0.6605 
0.3 0.7239 0.7144 0.6956 
0.4 0.7584 0.7480 0.7299 
0.5 0.7929 0.7812 0.7635 
0.6 0.8275 0.8141 0.7965 
0.7 0.8624 0.8469 0.8289 
0.8 0.8980 0.8798 0.8608 
0.9 0.9345 0.9131 0.8923 

-0.1 0.4632 0.5129 0.5497 
-0 .2  0.4253 0.4740 0.5104 
-0.3 0.3859 0.4335 0.4696 
-0 .4  0.3448 0.3912 0.4268 
-0.5 0.3014 0.3466 0.3817 
-0 .6  0.2552 0.2990 0.3335 
-0.7 0.2049 0.2472 0.2810 
-0.8 0.1483 0.1887 0.2217 
-0.9 0.0800 0.1177 0.1495 
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Table 8 
Momenta for two values of N near p = 1. The three lowest momenta are presented for each N. 

N =  6 p = 0 . 9 9  N =  2 0 p =  0.999 

kl 0.0134396 0.0019152 
k2 3.5106817 1.3661808 
k3 4.8534589 2.2480143 

to the value p = 1 and obtain a well defined energy which approaches  the value pre- 
dicted by  (17) as N becomes large. A well-defined numerical solution has not  been 
found for p > 1 with N finite for the set of  quan tum numbers  given above. Some 
values for the sets o f  ks  for particular values of  finite N are presented in table 8. 
There are a total o f  three momenta  for the case N = 6 and only the three lowest  
values of  the ten momenta  for N = 20 are given. For  the finite rings near p = - 1, 
the three momenta  approach the same value. For  example, when N = 6 the three 
momen ta  are given as follows: kl = 2.8278, k2 = 2.8278, k3 = 2.7218. 

A p p e n d i x  

EVALUATION OF INTEGRALS 

To evaluate the integral (12), define the function 

eiwZ 

f ( z )  cosh z + c 

and integrate this function around a contour  CR with one vertex at (R, iTr) such 
that  it is symmetric under reflection about  the real and imaginary axes. Using the 
identity cosh(x 4- iTr) = - cosh x one obtains 

fcR ei°;z ( e ~  - e - ~ )  f ~  eiwX 
cos~-z + c dz = - J - R  c o s ~ x  - c dx  

[~ e-~y [~ 
+ e~R J_,~ cosh(R-+iy)  + c idy - e - ~ R  e-~Y idy .  _~ cosh(R - iy) + c 

Int roduce the variable c = cos A where 0 < A < 7r so that  c E ( -  1, 1). There will be 
two poles inside the rectangle at zj = +iyo such that the denominator  vanishes at 
+iyo, that  is 

cosh(+iyo) = - cos A 

or  

cosy0=cos(~- ~) 
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and Y0 = 7r - A will give complex zj on the imaginary axis contained inside the 
contour .  

Evaluating the residues, one obtains 

27ri E Res(f ,  zj) = -47r sinh w(Tr - A) 
sin A 

Therefore  

27r sinh w(Tr - A) r R e ~x 
= sinh 7rw I - -  dx 

sin A J-R cosh x - cos A 

e -°" cidy_e_ , f f  e Y_ 
,, -~r cosh(R + iy) + J_r cosh(R - iy) + c idy 

since 

Res(z l , f )  = 

Therefore 

r~ e-O,y idy <~ e ±t~R I - - -  27rel~'l~r 

J_~cosh(R + iy) + c  s i n h R - I c l "  

Also sinla R ---, oo as R ~ c~. Thus, the contributions f rom the vertical segments 
vanish as R ~ oo and this gives the result. 

To evaluate (14), it suffices to consider the following integral for n i> 0: 

f c  zn ein~ dz 
I n = 2  2a + z_l + z iz 

Here, C is the unit circle in the complex plane. The denominator  vanishes at the 
roots o f  the polynomial  

z2 + 2 a z  + 1 = 0 ,  

where a = cosh ~. These roots are given by 

z1, 2 = - a  4- ~ -  1 

and if a > 1, only the upper root  is inside the circle. Evaluating the residues one 
obtains 

_ ( - 1 )  ~ e-2n~ 

(Z 1 -- Z2) 2 sinla 2~ 

In = ein~(27r) ( -1 )n  e-2n~ 
sinh 2~ 
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