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Numerical techniques for investigating an excited state
of the anisotropic Heisenberg model
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An analysis of the anisotropic Heisenberg model is carried out by solving the Bethe ansatz
solution of the model numerically as a function of finite N. A brief introduction to the infinite
chain limit is presented and the energy for a few limiting cases of the anisotropy parameter are
evaluated. Numerical results for the infinite chain are given which can be compared with the
case of finite increasing N. It is shown that the calculation can be extended to the case of an
excited state of the model.

1. Introduction

The properties of linear magnetic chains are useful to study because they provide
simple yet nontrivial models of many body systems. Linear antiferromagnetic
chains exist in crystals and can be studied experimentally. In the case in which the
model is described by the Heisenberg Hamiltonian with one anisotropic coupling,
the model can be solved exactly using the Bethe ansatz [1-4].

The investigation will be restricted to chains of spins on a lattice with nearest
neighbor interactions. The Hamiltonian of the system is taken to be

H= Z SXS+1 +Sy Sit1 +pSz 1) - (1)

Therefore, the Hamiltonian is anisotropic in the z-direction. The spin operator
with components S%¥, S?, and S? is associated with site j, and corresponds to states
of spin 1/2 distributed along sites labelled by the index j. Moreover, it is assumed
that the sites form a ring and satisfy periodic boundary conditions such that site
(N + 1) coincides with site 1.

The completely isotropic problem in which p = 1 has been investigated by Bethe
[1], Hulthen [5], and (1) is the form of the Hamiltonian used by Cloizeaux and Pear-
son [6]. Bethe was able to classify all the eigenstates of the isotropic Hamiltonian
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by means of sets of integers, and to obtain a set of nonlinear, coupled equations
which yield the eigenvalues of the system. The isotropic version of the model was
investigated by Griffiths [7], and the first extensive treatment of the anisotropic
model was given by Cloizeaux and Gaudin [8]. For the sake of completeness, many
aspects of the model are reviewed so the numerical work will have context.

Our intention is to investigate the solutions of the anisotropic Hamiltonian and
to review the numerical calculation of the ground state energy as a function of the
anisotropy parameter. This corresponds to a certain choice of the quantum num-
bers in the solution of the model. The energy per particle can also be obtained from
this. It is shown that the energy can be obtained numerically as a function of N
from the Bethe ansatz solution for various values of p. For the sake of complete-
ness, an outline of the derivation of the equations for the energy per particle for the
infinite chain will be given. The energies calculated from these equations can be
compared with the finite N values. In addition to the explicit calculations for finite
N, there are results for negative p, which were not given in Orbach [3]. It should
be noted that the finite N analysis will provide information to treat the infinite limit
in a different way. The finite N results can be used in combination with asymptotic
analysis, for example extrapolation, to give information about the large N region.

The next step is to use the same basic techniques to calculate the excitation ener-
gies which correspond to quantum numbers of a different symmetry for finite N
as a function p. Some mathematical techniques which are important in the deriva-
tions and have not appeared before are included. It is hoped that this will show the
methods of this article might be used to study general sets of solutions to the Bethe
equations, and that these techniques can be applied to other lattice spin models.
For example, let us mention that of particular interest recently in Hamiltonian field
theory is the use of finite size scaling. This has been used to extract critical points
and critical exponents from the two lowest eigenvalues of the Hamiltonian [8,9]. It
may be that by modifying the techniques here enough, one could use these tech-
niques to calculate similar quantities. In fact, the techniques used in this paper have
also been used in the study of the one- dimensional Hubbard model [7,10], and the
spin Hamiltonian. It is hoped that this work will be of use in encouraging the appli-
cation of these techniques to other areas.

2. Solution of anisotropic Hamiltonian

The Hamiltonian has been given in (1) and the Hamiltonian H commutes with
the component S” of the total spin operator

N
§ =Y.
i=1

Therefore, it is possible to diagonalize simultaneously H and S?, so for each eigen-
state |¥) of H one may write



P. Bracken / Anisotropic Heisenberg model 59
H|¥) = E|¥),

S7|0) = M|T).

We know that for p = 1, H commutes with the total spin S and so for the ground
state one has .S = 0, M = 0 and this state is unique. For p > —1, the ground state
should be unique with the value M = 0. However, for p < —1, the ground state
should be doubly degenerate with M = +N /2.

Let us briefly introduce the model, which will establish notation, and give an out-
line of the solution for finite values of N. Let |¥r) be the ferromagnetic state which
corresponds to M =1iN, so that all spins are parallel to each other, that is,
S} |Tr) = 0. One may write

H(p)|Vr) = EF|TF).

Since only the S} operators in H will make a contribution for this state, the energy
eigenvalueis given by

Er(p) =3Np.
By flipping r spins in | ¥ z), any eigenstate |Q2) of S can be constructed,
)= > alm,---,n)S, - S, |TF).

m<ny<---<n,
and the corresponding eigenvalue of §% is
M=iN-2r).

The task now is to determine the coefficients a(ny, - - - , #,) in order to give an eigen-
state of H with eigenvalue E

H|Q) = E|Q).
If we define € by setting
€= (E — SF)/N

then by substituting |§2) it is found that the eigenvalue problem is equivalent to
the difference equation

Z[a(n,h”')n:) vpa(nl,"'anr)] =2Nea(n1,-",nr)

with n; < .-+ < n,. In this equation, a term of a(n{, - - - , n]) is obtained by changing
one number 7 of a(ny, - - -, n,) by one unit and summing over all possible combina-
tions which come from it. The coefficients can be expressed in terms of r wavenum-
bers ko, @ = 1,- - -, r, and phases 1,4 associated with each pair of wavenumbers k,
and kg. The form of the ansatzis

a(ny,---,m) = Zcxp(ikaana—{-%Zi/)PaPﬁ) )
P o

a<f
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where P is any permutation of the set of numbers (1,- - -, 7). This is Bethe’s ansatz
form for the solution.

In terms of the wavenumbers k., the energy per particle ¢, which will be referred
to as the energy, is given by

e=N"! Z(coska -p). (2)

A relation implicit in the eigenvalue problem gives an equation which determines
)qp as follows:

cot(3k,) — cot(kp)
cot(Ias) = Z Z ) 3
(3tes) ”((1 T2 = (1 — p) cotlbka) cot(ley) ®)
Since the spin system is cyclic, the coefficients a(n;, - - -, n,) must satisfy the fol-

lowing boundary condition equations
a(nlan21‘ o ;nr) - a("z,' sy R +N)

and after some algebra with the ansatz, these imply the following equations for
the k,:

Nko =2mha+ Y tap- (4)
B

The total wavevector is directly related to the A, since
K=Y ko=2rN")"X,.
(21 [+

A numerical solution of the system (3) and (4), which corresponds to the ground
state quantum numbers, will be treated first. A second choice of the A, will then be
investigated. These correspond to an excitation of the system which is different
from the ground state.

3. Quantum numbers and variablesasp — 0

The behaviour of the variables will be discussed in the neighborhood of p = 0.
In particular, the behaviour of the quantities k, and 1,3 when p — +0 will be dis-
cussed first. The equations which determine the wavenumbers (4) come from the
periodic boundary conditions, where 1,4 is determined by (3).

If one supposes that near p = 0, the set of k, vary between /2 and 37/2, then
the set k,/2 varies between m/4 and 37/4, and so the product of functions
(1 — p) cot(ks/2) cot(ks/2) should never exceed one, and ought to be less than
one. Taking into account the fact that the cotangent is decreasing on (0, 7) one has
from (3)

cot(Mpap) — —0 sign(ka — kp)
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and therefore
Yop — — sign(ks — kg) .

Since the 1,53 goes to a constant, the k, can be evaluated from (4) by writing the
sum over (3 explicitly as follows:

Z%F Z Yap+ Y, Yap-

B#a 1< f<a a<f<N/2

The first sum on the right can be done by assuming the set of k, are monotonic so
thatks < k, for § < ato giveinthelimit p — +0

> Yap=-—m(a—1).

1< f<a

The second sum is given by

> w,,ﬂ.—_w(%r-a).

a<f<N/2
Therefore

Zwaﬂ = w%—me-{-w.

Ba
Setting

Ao =20 -1 (5)
in (4) for the ground state, wherea = 1, - - -, N/2, gives the result

T
ko (+0) —§+ﬁ(2a—l). (6)

As conjectured, for the limit p = +0, the k, vary roughly between 7/2 and 37/2 as
expected.

Consider the limit from the other direction p — —0. In this case, the behaviour
of the phases is somewhat different. Since the sign of p is opposite in this limit,
requiring that (3) give the ¥q4

cot(¥hag) — +0 sign(ks — kp),

1/)0,5 — T sign(ka ht kﬂ) .
The sum over 3in (4) can be done in the same way to give

Zwaﬁzhra—'rr—%w.
Pt

Suppose it is required that k, be continuous at p = 0 as p goes to zero from either
the right or the left, thatis
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k(+0) = k(~0).

Let )\, be the set of quantum numbers for the region —1 < p < 0, then applying con-
tinuity gives the following equation:

N
%w+7r(2a—l) =27r/\:,+27ra—7r—--2-7r.

Solving this equation for the X/, one obtains

N
A’a - '5 .
In order to describe the ground state for p>1, the same set of A, given in (5) are
used asin the domain 0 < p<1tocalculate the energy.
Given the wavevectors at p = 0, the energy for N finite can be found by substitut-
ing (6) into (2). The sum over a can be done by writing the sines in terms of complex

exponentials and then summing the geometric series. One obtains

1
Nsinﬁ

en(0) =

for finite N.

4. Calculations for finite N

To carry out the calculation, the region p > 0 will be treated first. To calculate
the energy for p > 0, the set of A, given by (5) are used to define the ground state
and (6) is used to initialize the wavevectors in a small region just to the right of the
origin. Of course these are only the approximate values for the wavevectors close
to 0, however, the calculation will produce the correct ones. If p is initialized to a
small positive number in this interval, the set of eqs. (3) and (4) can be solved
numerically by a straightforward Newton—-Raphson iteration technique to calcu-
late the exact values for the set of k, at the corresponding value of p. The energy can
be calculated from (2). With these values to initialize the variables, the parameter
p can be incremented by a small amount and the exact values of the variables at the
new p can be evaluated. If this is continued, the wavevectors, and consequently
the energy, and the energy per particle, can be calculated essentially as continuous
functions of p out to large values of p. The results of the numerical calculation
over arange of p are shown in table 1.

The calculation for —1 < p < 0 proceeds in exactly the same way by using (6)
to initialize the wavevectors just to the left of the origin, where the wavevectors are
continuous through p = 0. However, in this region, the quantum numbers which
define the state are given by A/ = N/2 for each o. In this case, the parameter p is
decreased by small amounts until the neighbourhood to the right of p = —1 is
reached. At this value, the ground state becomes doubly degenerate and the energy
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Table 1

Values of e as a function of p from 0.1 to 2.0 for particle numbers of N = 6, 10, 14, 34 and 50.

p N=6 N=10 N =14 N =34 N =50
0.1 —0.3696 -0.3593 —0.3565 -0.3541 -0.3539
0.2 —0.4064 —0.3955 -0.3925 —0.3900 ~0.3897
0.3 —0.4437 —0.4321 -0.4290 -0.4264 —0.4261
0.4 —0.4814 —0.4693 —0.4660 -0.4632 —0.4629
0.5 —0.5196 —0.5069 —0.5034 —0.5005 —0.5002
0.6 —-0.5582 —0.5449 —0.5413 —0.5383 -0.5380
0.7 —0.5973 —0.5834 -0.5797 -0.5765 —0.5761
0.8 —0.6368 —0.6223 -0.6184 —0.6151 -0.6148
0.9 —0.6767 —0.6617 ~0.6577 ~0.6542 —0.6539
1.0 —0.7171 —0.7015 —0.6973 —0.6938 -0.6934
1.1 —0.7579 —0.7418 —0.7375 —0.7338 -0.7334
1.2 —-0.7991 —0.7825 —0.7781 -0.7744 —0.7740
1.3 ~0.8407 -0.8237 -0.8192 —0.8154 —0.8265
1.4 —0.8827 —0.8653 -0.8607 —0.8569 —0.8668
1.5 -0.9251 —0.9074 —0.9028 —0.8990 -0.9077
1.6 —0.9679 —0.9500 —0.9453 —0.9416 -0.9728
1.7 —1.0110 -0.9930 —0.9883 -0.9848 —1.0256
1.8 —1.0545 —1.0364 -1.0318 —-1.0284 —1.0805
1.9 —1.0984 —1.0802 —-1.0757 -1.0726 —-1.1224
2.0 —1.1426 -1.1244 ~1.1201 -1.1173 —1.1987

becomes proportional to p. Results from the numerical calculations are shown in
table 2. For the cases N = 6, 10 and 14, the calculation has been continued down to
a value of p = —0.999 and the following values for energy have been obtained,
e = —0.00030 for N = 6, —0.00027 for N = 10and —0.00026 for N = 14.

The limit p = —1 is characterized by the fact that all the values of k, become
equal, in fact, one should have k, = 7. As an example, at p = —0.999 one obtains
numerically the following values for the three wavevectors when N =6,
k1 = 3.1069, k, = 3.1415, k3 = 3.1762, respectively.

Table 2

Values of eas a function of p from —0.1 to —0.9 for particle numbers of N = 6, 10, 14, 34 and 50.

0 N=6 N=10 N=14 N=34 N =50
-0.1 ~0.2974 —0.2883 —0.2859 -0.2838 —0.2836
~-0.2 ~0.2620 —0.2536 -0.2514 —0.2494 —0.2492
-0.3 ~0.2272 -0.2195 -0.2174 —0.2156 -0.2154
-0.4 ~0.1928 —0.1859 —0.1840 -0.1824 —-0.1822
-0.5 ~0.1591 -0.1529 —0.1512 —(.1498 —0.1496
—0.6 —0.1259 -0.1206 -0.1191 -0.1178 -0.1177
-0.7 —0.0934 —0.0890 —0.0878 —0.0867 —0.0866
-0.8 —0.0615 -0.0582 —0.0573 —0.0565 -0.0564

-0.9 —0.0303 —0.0285 —0.0279 -0.0273 ~0.0200
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5. Limit of the infinite chain

An integral can be obtained for the energy in the limit N — oo, and it will briefly
be outlined how this is accomplished, and then three limiting cases can be exam-
ined. The numerical results of the calculation can be compared to the analytical
results.

For -1 < p < 1, define

p:COS’y, 0<’Y<7r,
tanh(1f.) = tan(}y) cot(¥ka) ,
cot(%’%baﬁ) = cot'ytanh(%ea - %gﬁ) ,

—T < Yo < T.

When N — o0, k, becomes a continuous function k(x). In the same way, ¥,z
becomes the function 1(x, x’) and these equations pass into a corresponding set
which depend continuously on the variables k(x) and 1(x, x’). Passing to the contin-
uous limit these equations become

tanh(}¢) = tan(}y) cot(3%), (7)

cot(3p(x, x')) = cot~y tanh (-g - g) . (8)

Consequently, the energy of the corresponding state can be expressed in terms of
the integral

1 2r
=), (cos(k(x)) — p) dx (9)
and (4) becomes an integral equation
1 o0
k(x)=x+4—7-r/0 P(x,x') dx'. (10)

The auxillary variable 6, becomes a continuous function 8(x), and differentiating
both sides of this equation with respect to x, realizing that 1) is discontinuous at
x = x’, and finally introducing the function f(6) defined by

dx
d—é = _f (0) ’

the integral equation in terms of f(6) is given by
ok (x, x')

1 1 [
%= O+ [ e (11)
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such that dy(x, x') /06 denotes the continuous part of the derivative of 1(x, x'). It
may be assumed that §(x) decreases from +oo to —oo when x increases from 0 to 2.
Differentiating (8) with respect to § one obtains using cosh?v= (cosh 2v + 1)/2,

[ sin 2y

80 cosh(f— &) —cos2y
The derivative of k is given by

ok sin~y
3 coshf —cosy

and so the integral equation can be written as

f(0)+_l_/°° sin 27y £(8)de 2sinvy

27 J_o cosh(6 — 0') — cos 2 ~ coshf — cosy

Introducing the Fourier transform of f (),

70) = /_ " () dw.

00

the integral over & can be done by using the following result:

1 / o exp(iwd') _ e sinhw(r —T)
2w J_ocosh(§ — @) —cosT' sinTsinhwr

(12)

The integral equation then becomes

/oo dusal)e (1 + sinh(—2wy + mu)) _ 2siny

sinh wr " coshf —cosy
_—)

Multiplying both sides of this equation by e and integrating from —oo to +o00

with respect to f using (12) one obtains
2 sinhw(m — =)

= sech
sinhon + sinh(or — 2ey) o0 Y

a(w) =

and substituting this result for a(w) back into the integral for £(6) it is found that

the integral can be done in closed form to give
T Om

0) = —sech—.

£6) =Zsechs”

Since cosk(x) = (1 — 2sin*k(x))/2, using (10) and identities, the energy can be
written as
__a&v/m 1(0)

4r  J_.coshf —cosy

Introducing the Fourier transform of f(6) and carrying out the integral over 6, the
energy per particle is
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/ ® sinhw(r — ) dw

o Sinh wm coshwy

€= —=siny

2
Expanding the hyperbolic sine, one arrives at the final result for 0 < p<1:

. * tanh wry
=_ 1-—
€ sin -y /0 ( tanh )dw

The particular limits p = 0 and p = 1 can be evaluated explicitly from this equation
and in order to compare with the case of finite N, it is useful to do so. To obtain
p = 0,sety = w/2and so it follows that

R A 2 1
€(0) = 2/0 cosh”(wn/2) dw = —

Exactly the same result is obtained if one takes ey(0) and calculates the limit
N — o0o.Toobtain p = 1, set v = wysothat ¢(p) can be written as
siny [ tanhv

e(p) = ——— 1l —————|dv.
A
Taking the limity — 0 gives ¢(1)

* * dv
e(l)z—-/o (1—-tanhv)dv=_2/0 & w2,

Since A, = N/2 for —1 < p < 0, it can be shown that the integral equation corre-
sponds exactly with the previous integral equation, and so the calculation of £ (8) is
performed in exactly the same way. It is then very easy to obtain the energy per par-
ticle at p = —1 for the infinite limit wherey = =, and one obtains

e(—1) =0. (13)

For p>1set p = cosh, the integral equation is exactly the same as (11) however
since p > 1 the derivatives are found from the continuations of (7) and (8) which
arevalidforp > 1,

tan($¢) = tanh(}y) cot(%k),

cot(Mp(x, x’)) = cothytan(ip — 1¢') .
The integral equation which determines g(¢) is therefore
sinh2y [™ g(¢) , _ 2sinhy
8(¢)+ 2 /_,, cosh 2y — cos(¢ — ¢') ¢ = coshy —cos¢

Notice that if one makes the replacement ¢ — ¢ + 27 in this equation, it follows
that g(¢) = g(¢ + 27) so g(¢) is 27 periodic, and can therefore be expanded in a 27
periodic Fourier series as follows

g(¢) = Z a,e™ .

n=—oo
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Using the integral
1 [ exp(ing’) r _ ing €XP(=In]7)
2w J_,coshy — cos(¢p — &) ¢’ = ¢ sinhy (14)
it is found that
. 1
" coshny’

Substituting g(¢) with a, given above, the energy per particle is given in this region
by

€= —sinhfy(Z(l — tanhnvy) +%) .

n=1

Values for the energy can be obtained from this by simply adding terms when
p > 1. Values for e as a function of p for the case N = oo as calculated from the inte-
gral and this series expansion for e are given for certain values of p in table 4. Using
Thiele with five points as a function of N, it can be shown that the finite chain results
in the first table tend to those of the infinite chain as N becomes large.

6. Excited state

The notation of des Cloizeaux and Gaudin [8] for the excitation energy will first
be reviewed here. In the limit N — oo, one calculates the excitation energy
n(p, M, q) which is defined by the equation

(e, M,q) = lim (E(p, M,q) — E4r(p))-
Consequently, for finite cycles, one has

W(P,M,‘I) -——N(f(p,M,Q)—EAF(p)), (15)
where €47 (p) is the value of € which corresponds to the ground state. By solving

Table 3
Values of € as a function of N at fixed p = £0.00001 calculated numerically. Theoretically, it is found
that €4, (0) = —1/7=0.31830.

N €(0.00001) €(—0.00001) ex(0)

6 ~0.33333 —0.33332 —0.33333
10 —0.32361 —0.32360 —6.32360
14 ~0.32100 —0.32099 ~0.32099
34 —0.31876 —0.31875 -0.31876

50 —0.31852 —0.31851 —0.31851
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Table 4
Selected values of ¢ as a function of p for the case N = oo calculated from the integral for p < 1 and
from the seriesforp > 1.

P €

0.3 —-0.4259
0.4 ~0.4627
0.5 —0.4999
0.6 -0.5377
0.7 —0.5759
0.8 —0.6145
1.0 —0.6931
1.1 -0.7331
1.2 —0.7736
1.3 —0.8146
1.4 —0.8562
1.5 —0.8984
1.6 —0.9411
1.7 —0.9844
1.8 —1.0282
1.9 —-1.0725
2.0 -1.1172

the coupled Bethe ansatz equations for the given set of A4, the value of ¢(p) can be
calculated using (4), and then the excitation energy is calculated from (5).

To determine the excitation energy 7, the integers A\, which characterize the
given state must be specified. For the ground state, these integers are given as
Ao =2a—1,fora=1,---,N/2. For the state which is referred to as |p, 0, g) in [8],
the quantum numbers are given as follows:

Ae=2a—-2, 1<a<n,

A =2a-1, n<a<N/2, (16)

Here, n is an integer. A fixed number 7 of these quantum numbers will differ by
one unit from the ground state values. The spin wave vector g is determined by »n
through the equation

H_g_’r_'_’.

Given these quantum numbers, the system (2) and (3) can be solved as a function
of p. Quantum numbers for other excitations have been discussed by Griffiths [7].
This is done for finite values of N. By taking a number of values for the pair of inte-
gers n and N, the ratio can be adjusted so that we are working at a fixed value of ¢
for increasing N. This means we take a finite value of n and calculate the corre-
sponding \,. Of course, ¢ becomes a continuous variableas N — oo.
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7. Calculations

The quantum numbers are determined by eq. (16). Consider, as an example, the
case in which N = 6, and let us take n = 1. This gives the value |g| = 7/3. Then the
set of quantum numbers which is used to solve (2) and (3) is the set given by
{0,3,5} where in contrast, the ground state quantum numbers are given by
{1,3,5}.

The numerical analysis is just an extension of that used for the ground state.
The Bethe equations, which were presented in the introduction, can be solved
numerically for a given set of quantum numbers using a Newton method algorithm
once initial values for the variables k, have been determined. This is the main point
we would like to emphasize in this article. The variables k, can be initialized at
p = 0for this state. To do this, consider first the ground state. For the ground state,
it has been shown [8] that the set of k, can be determined analytically at p = 0,
and are given by the expression

ka=%
Using these values to initialize the calculation at p = 0, the system can be solved
by iterating in the first » quantum numbers while keeping p fixed near zero. That is,
we begin with the set of ground state values, and then increment the first » of them
in a direction such that they have been changed to the point at which the first n of
the )\, are equal to the numbers given in (16). At each small change in the quantum
numbers, a corresponding set of &, is calculated by means of the iterative Newton
algorithm. These &k, will initialize the variables at the next increment.

Once this is carried out, a set of k, which correspond to the A\, in (16)and p =0
are obtained. Now keeping the quantum numbers fixed, p can be varied away
from zero to obtain the energy as a function of p for the new state.

Similarly, the k, can be calculated for —1 < p < 0 where the quantum numbers
which are used for this state are given as follows:

+(2a—1)7v’5.

N N
= <—=.
Ay 7 n<a\2

The k,, which correspond to these for p = 0~ can be calculated in exactly the same
way as the set for p = 0T, and then this set of momenta is used to initialize the calcu-
lation as pis decreased toward p = —1.

It can be shown that if we define y through the equation

p=cos7,

then, in the limit of the infinite chain, N — oo, the excitation energy is given by
the equation
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rsin .
n(p,0,9) = 277lsmql, -1<p<l. (17)

Numerical results for small cycles can be compared to results which are obtained
from this equation for the infinite cycle.

8. Results

It has been found that for each of the finite rings which have been studied with
this technique, a finite, well-defined solution for the set of k, and corresponding eis
obtained as p is varied between —1 and +1. The initial values for the variables are
calculated using the procedure outlined earlier, and the corresponding value of g is
taken to agree with that calculated for the finite N case. The ground state energy
can be calculated using a similar procedure. These values are used to calculate the
excitation energies. The values for the excitation energies for the infinite chain are
calculated from equation (17). The numerical results are reported in tables 5 to 7.

There are some other interesting features of this particular solution to the Bethe
equations we mention. It is also found that one of the k,, in particular ki, tends
numerically to zero as p approaches 1. In the solution of (2) and (3), this means that
the function cot(k; /2) becomes singular. It is possible to approach arbitrarily close

Table 5
Excitation energy n = Nle — ¢ for the anisotropic Heisenberg model as a function of p where ¢, is
the ground state energy. The quantum numbers are as given in the text, and |g] = #/3.

p N=6 N=18 N=o0
0.1 1.0499 0.9920 0.9203
0.2 1.0999 1.0393 0.9732
0.3 1.1502 1.0874 1.0249
0.4 1.2008 1.1349 1.0754
0.5 1.2520 1.1818 1.1250
0.6 1.3039 1.2285 1.1736
0.7 1.3567 1.2751 1.2213
0.8 1.4105 1.3218 1.2683
0.9 1.4656 1.3689 1.3146

-0.1 0.4492 0.7106 0.8100

-02 0.3969 0.6534 0.7521

-0.3 0.3428 0.5940 0.6919

—04 0.2865 0.5320 0.6289

-0.5 0.2273 0.4667 0.5625

—0.6 0.1645 0.3971 0.4914

-0.7 0.0968 0.3214 0.4140

-0.8 0.0216 0.2362 0.3267

—-0.9 0.0667 0.1327 0.2203
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Table 6
Excitation energy 1 = Nle — ¢ for the anisotropic Heisenberg model as a function of p where ¢, is
the ground state energy. The quantum numbers are given, and |g| = 7/4.

p N=38 N=16 N =00
0.1 0.8077 0.7920 0.7514
02 0.8497 0.8328 0.7946
0.3 0.8913 0.8730 0.8368
0.4 0.9328 0.9128 0.8781
0.5 0.9745 0.9523 0.9185
0.6 1.0165 0.9917 0.9582
0.7 1.0590 1.0310 0.9972
0.8 1.1023 1.0705 1.0356
0.9 1.1467 1.1105 1.0734

-0.1 0.4978 0.5912 0.6613

-02 0.4532 0.5446 0.6140

-0.3 0.4068 0.4962 0.5649

04 0.3584 0.4456 0.5135

-0.5 0.3074 0.3923 0.4592

-0.6 0.2531 0.3354 0.4012

-0.7 0.1942 0.2735 0.3380

—0.8 0.1282 0.2038 0.2667

-0.9 0.0490 0.1192 0.1799

Table 7
Excitation energy 7 = Nle — ¢| for the anisotropic Heisenberg model as a function of p where ¢, is
the energy of the ground state. The quantum numbers are given and |g| = /5.

p N=10 N=20 N = oo
0.1 0.6538 0.6457 0.6246
0.2 0.6891 0.6803 0.6605
0.3 0.7239 0.7144 0.6956
0.4 0.7584 0.7480 0.7299
0.5 0.7929 0.7812 0.7635
0.6 0.8275 0.8141 0.7965
0.7 0.8624 0.8469 0.8289
0.8 0.8980 0.8798 0.8608
09 0.9345 0.9131 0.8923

-0.1 0.4632 0.5129 0.5497
-0.2 0.4253 0.4740 0.5104
-03 0.3859 0.4335 0.4696
—0.4 0.3448 0.3912 0.4268
-0.5 0.3014 0.3466 0.3817
—0.6 0.2552 0.2990 0.3335
-0.7 0.2049 0.2472 0.2810
-0.8 0.1483 0.1887 0.2217

~0.9 0.0800 0.1177 0.1495
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Table 8
Momenta for two values of N near p = 1. The three lowest momenta are presented for each N.
N=6p=099 N =20p=0.999
ky 0.0134396 0.0019152
) 3.5106817 1.3661808
ks 4.8534589 2.2480143

to the value p = 1 and obtain a well defined energy which approaches the value pre-
dicted by (17) as N becomes large. A well-defined numerical solution has not been
found for p > 1 with N finite for the set of quantum numbers given above. Some
values for the sets of k, for particular values of finite N are presented in table 8.
There are a total of three momenta for the case N = 6 and only the three lowest
values of the ten momenta for N = 20 are given. For the finite rings near p = —1,
the three momenta approach the same value. For example, when N = 6 the three
momenta are given as follows: k; = 2.8278, k; = 2.8278, k3 = 2.7218.

Appendix
EVALUATION OF INTEGRALS

To evaluate the integral (12), define the function

fz) =

and integrate this function around a contour Cx with one vertex at (R, im) such
that it is symmetric under reflection about the real and imaginary axes. Using the
identity cosh(x + in) = — cosh x one obtains

exwz th
—_ 1rw —1rw
———dz = )
caCoshz+c¢ Rcoshx—c

iwR " “ id —~iwR e’ id
Te /_,,cosh(R-{—zy)—}-c y—e /_,,cosh(R—iy)+cl &

Introduce the variable ¢ = cos A where 0 < A < 7so that ¢ € (—1,1). There will be
two poles inside the rectangle at z; = Xiy, such that the denominator vanishes at
+iyo, thatis

iwz
€

coshz+¢

cosh(%iyg) = —cos A
or

cos yp = cos(m — A)
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and yp = 7 — X will give complex z; on the imaginary axis contained inside the
contour.
Evaluating the residues, one obtains

. sinhw(m — X)
2 R ) = —4p— N
i Z es(f, z;) 4r pr
Therefore
3 - R iwx
2wﬂh_“’7§.7r___’\) = sinhvrw/ . A
sin A _rcoshx —cos A

+ ein / i e~ id e'-in / " e™ id
_rcosh(R+iy) +¢ Y —rcosh(R —iy) +¢ Y

since

iR e~ , 2mellm
dy| < ———— -
¢ _/_,,cosh(R:l:iy) +e' y' sinh R — |¢|
Also sinh R — oo as R — oo. Thus, the contributions from the vertical segments
vanish as R — oo and this gives the result.
To evaluate (14), it suffices to consider the following integral for n > 0:
e dz
ca+zl+ziz~

I,=2
Here, C is the unit circle in the complex plane. The denominator vanishes at the
roots of the polynomial

2+2az+1=0,
where a = cosh ®. These roots are given by

21,2=—a:i: vaz—-l

and if @ > 1, only the upper root is inside the circle. Evaluating the residues one
obtains

7 (1) e

Res(zy,f) = (z1 —z2)  2sinh2®
Therefore

I, = €™ (2m) (“’sﬂﬁf“
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